全域智慧就业资讯服务平台
全国
全国
安徽
北京
重庆
福建
甘肃
广东
广西
贵州
海南
河北
河南
黑龙江
湖北
湖南
吉林
江苏
江西
辽宁
内蒙古
宁夏
青海
山东
山西
陕西
上海
四川
天津
西藏
新疆
云南
浙江
香港
澳门
台湾
400-633-0111
硕博招聘 > 海外博士招聘 > 法国洛林大学2024年招聘博士后(时空异构数据分析的统计和张量方法)

法国洛林大学2024年招聘博士后(时空异构数据分析的统计和张量方法)

2024-07-02 08:27:05
博士研究生招聘网
分享:

法国洛林大学2024年招聘博士后(时空异构数据分析的统计和张量方法)

洛林大学(Université de Lorraine)是法国著名的公立综合性大学之一,于2012年1月1日由三所同类型的公立综合性大学和一所专业性较强的工程师学校重组合并而成: 南锡一大( Université Henri Poincaré-Nancy 1),南锡二大(Université de Nancy 2),梅斯大学(Université Paul Verlaine - Universite de Metz),国立洛林综合理工学院(INP Lorraine: Institut national polytechnique de Lorraine)。

(Postdoc offer) Statistical and Tensor Methods for Spatiotemporal Heterogeneous Data Analysis

Offer Description

We are offering a postdoc position on the development of statistical and tensor decomposition methods for representation learning of heterogeneous data with application to the analysis neuroimaging data.

Location: The CRAN laboratory (University of Lorraine) at Nancy, France, with visits to the MLSP laboratory (UMBC) in Maryland, USA. The candidate will work with Prof. Sebastian Miron, Dr. Ricardo Borsoi and Prof. David Brie in the CRAN laboratory, Nancy, and with Prof. Tülay Adali at the MLSP laboratory, UMBC, USA.

The starting date is flexible (the position is open until filled).

Description: The analysis of spatiotemporal data is a fundamental problem in multiple domains such as neuroscience, epidemiology, climate science and pollution monitoring. Developing representation learning methods for spatiotemporal data that can effectively and jointly handle data from diverse modalities poses a significant challenge. A particular difficulty is to devise flexible models which are directly interpretable, readily providing insight into the relationships that are learned from the data. The candidate will develop flexible representations learning and data analysis methods specifically designed to handle heterogeneous spatiotemporal data, effectively utilizing both algebraic (matrix and tensor decompositions) and statistical frameworks to generate results that are interpretable and backed by statistical guarantees. The developed methods will be applied to personalized medicine, with the aim to elucidate the interplay between neuroimaging data (e.g., fMRI) and cognitive/socioeconomic factors as well as their temporal evolution.

Candidate profile: Ph.D. degree in signal processing, machine learning or applied mathematics or related fields.

To apply: If interested, please send your application including an academic CV and a motivation letter to sebastian.miron@univ-lorraine.fr, ricardo.borsoi@univ-lorraine.fr, david.brie@univ-lorraine.fr, and adali@umbc.edu.

For further information, please see:

https://cran-simul.github.io/assets/jobs/P_postdoc_these_NSF_2024.pdf

应聘时请将简历抄送一份到:jiuyeqiao@eol.cn,邮件标题:应聘单位名称、姓名
更多资讯!欢迎扫描下方二维码关注就业桥(微信号:就业桥)。
关键词阅读
法国洛林大学
最新职位 更多
相关栏目
院校硕士招聘 更多>
企业硕士招聘 更多>
科研院所硕士招聘 更多>
医疗卫生硕士招聘 更多>
博士招聘 更多>
收起

意见收集

关闭

您对就业桥有任何建议意见都可以给我们留言哦~

取消
确定